
Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 1

Ivy for Grasshopper Manual
version 1.0
This is the manual for Ivy. It contains the description of every tool that
comes with the package along with the description of the relevant inputs
and outputs. Also included are a few usage tips for the crucial
components.

The tools in Ivy are grouped into nine sections and are laid out on the Grasshopper ribbon in a
similar fashion to their expected use. In other words, the sequence you might employ them might
resemble the enumeration of sections on the ribbon.

Creating a MeshGraph – Adding weight to the MeshGraph – Primary Segmentation (Tree Making) –
Secondary Segmentation – Iterative Segmentation – Special Segmentation – Fabrication.

Additional helpful tools are grouped in the last two sections Mesh Info and Other Tools.

1. MeshGraph creation.
The research behind Ivy is based on graph theory and as such the main concept and the data
backbone of the plug-in is an object that encodes the properties of a graph (nodes and edges)
constructed on top of an input mesh. The first section in Ivy contains the tools for creating graphs
from meshes (called from now MeshGraphs or just simple graphs) and extracting basic information
from those graphs.

A MeshGraph is a set of collections of data directly derived from the mesh geometry/topology and
enhanced by exterior data associated with the mesh by the user. The most important collections
inside the MeshGraph data object are the list of nodes and the list of edges connecting those nodes.
In Ivy the MeshGraph nodes are derived from the mesh faces and the MeshGraph edges are
constructed initially from the non-naked topology edges of the mesh. This makes the initial
MeshGraph constructed from a mesh, the dual graph of the respective mesh. However, the
MeshGraph is not bound as the dual of the mesh forever. The nodes and edges collections can lose
or gain members according to the rules enforced by the other tools in Ivy.

The MeshGraph nodes are data objects too and they encode more than their geometric mesh
counterpart. A typical MeshGraph node contains references to connecting edges, neighboring
nodes, a weight value and many other bits of data relevant to different Ivy operations.

In a similar fashion, edges are also complex data objects maintaining references to connecting
nodes, a weight value, angle, bend type, as well as a link to their geometric mesh counterpart - the
topological edge.

Graph from mesh (GraphMsh) Creates a MeshGraph from a mesh
specified by the user
Inputs:
(I) Input Mesh– the mesh used as a basis for the MeshGraph
Outputs:
(G) MGraph– the MeshGraph object

https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 2

Graph to mesh (Graph2Msh) Extracts the mesh from a MeshGraph
object. Only the nodes present in the MeshGraph will be translated
back into mesh faces.
Inputs:
(G) MeshGraph– the MeshGraph object
Outputs:
(M) Mesh - The mesh constructed from the nodes of the MeshGraph

MeshGraph (MGraph) This is the container for temporary storage of the
MeshGraph data type. Because the MeshGraph data object has inbuilt
automatic data casting it can be used to convert from and to the
standard mesh type. Just plug in a
mesh as an input or output. This
works for every MeshGraph input
or output and for all Ivy tools.
Also. You can use this container to
visualize the graphs on meshes
beyond the default visualization
types that Rhino/Gh offer. Just
right click on the component and
select the type of enhanced
visualization you would like to see.
Please note that some types only
apply to certain types of
MeshGraphs like for instance
Trees.
Normal preview – The normal default geometry preview for the
MeshGraphs. This includes the edges of the graphs as polylines. Uses
the default grasshopper colors for selected and unselected geometry
Simple enhanced preview – A preview style designed for a better
visualization of the graph on the mesh. Uses a bright cyan for the
selected graph and dark orange for the unselected one.
Weight Enhanced preview – Simple Enhanced preview with added
edge weight displayed as edge thickness in the selected preview of the
graph.
Leaf Distance Enhanced preview – Simple Enhanced preview with edge
thickness based on the depth of the edge in the tree graph. Only works
on tree graphs.
Draw extra node geometry – Previews the curve geometry integrated
in the graph object using Set Node Geometry and Node Geo to Graph
tools. Works in all types of previews
Show node weight – Scales the node preview in the enhanced preview
modes based on the node weight if present.
Draw the base mesh – Forces the preview of the underlying mesh for
all types of previews (selected and unselected)

NOTE. Since all additional display previews are coded in the
MeshGraph parameter, they are directly accessible through right click
on every component that outputs the MeshGraph type. Just click on
the output (usually named G or MG) and select the desired
visualization.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 3

Graph Nodes (Nodes) This tools extracts the node information for each
node present in the input graph. The outputs are populated if the
respective information is present in the node
Inputs:
(G) MeshGraph – the MeshGraph object
Outputs:
(Id) Mesh Id – the number of the face in the face collection of the
original mesh
(P) Point – a point representing the geometric location of the node.
This is the usually the center of the face polygon
(W) Weight – a floating point precision number between 0 and 1
expressing the weight of the node in the graph.
(E) Edges – a list of graph edges (their mesh Id) connecting to this node
(N) Neighbors – a list of nodes (their mesh Id) directly connected by
edges to this node inside the MeshGraph.
(D) Depth – the depth of the node inside a tree graph (will be 0 if graph
is not a tree)

Graph Edges (Edges) This extracts the edge information for edges
present in the input graph. The outputs are populated if the respective
information is present in the edge.
Inputs:
(G) MeshGraph – the MeshGraph object
Outputs:
(Id) Mesh Id – the number of the edge in the topological edge
collection of the original mesh
(gE) Graph Edge – the polyline representing the geometric connection
between two graph nodes. The node points are extracted by the
previous component
(tE) Topo Edge – the geometric representation of the mesh edge this
MeshGraph edge references. This is a line.
(W) Weight – a floating point precision number between 0 and 1
expressing the weight of the edge in the graph.
(N) Nodes – the graph nodes this edge connects. The nodes are
expressed through their unique mesh Id.
(A) Angle – the dihedral angle in radians between the faces of the mesh
connected by the corresponding topological edge. Values range from 0
to Pi.
(B) Bend – the type of bend considering the normals of the mesh.
1=Flat; 2=Convex; 3=Concave.

2. Adding weight.
This section contains a set of tools used to add additional weight data to the mesh graph collections
(edges and nodes). Most of the tools work for edges but there are some tools for specifying node
weight. Weight is a useful concept for differentiating between the edges or nodes of the mesh. The
weight data is used by the segmentation algorithms to decide where to perform edge removals
either to partition the mesh or convert the graph into a tree. The weight data can come from any
numerically expressible source within the Grasshopper environment. This includes mesh information

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 4

(like dihedral angle, or face size) or outside information (like the proximity of the mesh to some
other geometry).

Custom Edge Weight (cEdgeWeight) This tool assigns a set of custom
values as weights for each of the edges in a MeshGraph. The set of
values is remapped to the 0…1 interval.
Inputs:
(G) MeshGraph – the MeshGraph object
(W) Weights – the list of weight values to be assigned to the edges. The
number of weight values needs to match the number of edges in the
graph
Outputs:
(G) MeshGraph – the weighted MeshGraph object

Custom Node Weight (cNodeWeight) assigns a set of custom values as
weights for each of the nodes in a MeshGraph. The set of values is
remapped to the 0…1 interval.
Inputs:
(G) MeshGraph – the MeshGraph object
(W) Weights – the list of weight values to be assigned to the edges. The
number of weight values needs to match the number of edges in the
graph
Outputs:
(G) MeshGraph – the weighted MeshGraph object

Color Edge Weight (Color Weight) Calculates and assigns a set of values
to the edges in the MeshGraph based on the brightness value averaged
for each topological edge. The value is averaged based on the color
values for each of the topological vertexes defining and edge. The
calculated values are remapped to the 0…1 interval.
Inputs:
(G) MeshGraph – the MeshGraph object
Outputs:
(G) MeshGraph – the weighted MeshGraph object

Face Midpoint Distance Edge Weight (MDistWeight) Calculates and
assigns a set of values to the edges in the MeshGraph based on the
geodesic distance between the face centers of two adjacent faces. The
calculated values are remapped to the 0…1 interval. The geodesic
distance is calculated for the polyline passing through the edge
midpoint.
Inputs:
(G) MeshGraph – the MeshGraph object
Outputs:
(G) MeshGraph – the weighted MeshGraph object

Face Angle Edge Weight (FAWeight) Measures the dihedral angle for
each topological edge of the mesh and assigns the value as weight to
the corresponding graph edge. The set of values is remapped to the
0…1 interval.
Inputs:
(G) MeshGraph – the MeshGraph object

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 5

Outputs:
(G) MeshGraph – the weighted MeshGraph object

Face Size Node Weight (fsFaceWeight) Measures the area for each face
of the mesh and assigns the value as weight to the corresponding
graph node. The set of values is remapped to the 0…1 interval.
Inputs:
(G) MeshGraph – the MeshGraph object
Outputs:
(G) MeshGraph – the weighted MeshGraph object

3.Primary segmentation
The third section contains the workhorse tools for Ivy, the tree making algorithms. For more
information on graphs and trees you can look here.

The decision to call this section primary segmentation has been taken as the result of two factors. 1.
The tools in this section can partition a graph into more subgraphs while transforming it into a tree.
2. The edge removal is the basic operation in graph segmentation. This makes tree creation from a
dual graph a particular case of graph partitioning. The group of tool contains four subsections with
the division based on the particulars of the tree-making algorithms. We have single root graph
parsing algorithms, disjoint set algorithms, multi-root graph parsing and complex graph agents.

DFS Edge Weight (dfsEdge) Depth first search graph algorithm.
A modified flavor of the standard backtracking, graph walking
algorithm that uses the edge weight as guidance. The process starts in
a specified node and keeps circulating over the lowest weight edges
until it runs out of nodes to go. The already visited nodes are avoided.
After the first journey gets stuck the process backtracks one step a
time looking for unvisited nodes via the edges with lowest possible
weight. The process stops when no more nodes unvisited nodes are
left in the graph. This algorithm tends to produce longer strands of
nodes and fewer bifurcations in the tree.
Inputs:
(G) MeshGraph – the MeshGraph object that the DFS will be used on
(S) StartFace – the starting face for the algorithm. (if no start face is
present the first node in the graph will be used.
Outputs:
(G) MeshGraph – the tree MeshGraph

MST Prim (mstP) Minimum Spanning Tree making tool based on Prim’s
algorithm. This is basically a Breadth First Search BFS algorithm where
each successive step is decided based on the weight landscape of the
graph. The process starts from a node and grows in all directions (using
all edges starting from the node) but favoring first the connections with
the lowest weight. At each step, regardless of the state of the graph,
the edge with the lowest weight starting from the parsed nodes and
going outwards is walked. The node at the other end of the edge is
added to the fold. The process stops when there are no more unvisited
nodes. If the weight landscape is constant (all edges have the same
weight) this algorithm equals a BFS.

https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Breadth-first_search

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 6

Prim is a good, medium speed all-purpose algorithm.
Inputs:
(G) MeshGraph – the MeshGraph object that the DFS will be used on
(S) StartFace – the starting face for the algorithm. (if no start face is
present the first node in the graph will be used.
Outputs:
(G) MeshGraph – the tree MeshGraph

MST Dijkstra (mstP) Minimum Spanning Tree making tool based on
Dijkstra’s algorithm. The process works in a similar way to Prim’s but
with one very important difference. At each step the decision is made
comparing not the individual weights of the edges going out from the
parsed nodes, but the weight of the lightest path of edges connecting
the fringe nodes to the root (starting node). In this way a Dijkstra tree
is a tree of minimal paths connecting all nodes in the graph to the
starting node.
Dijkstra’s is a bit slower than Prim’s but a much better choice for
detecting “features” in the weight landscape.
Inputs:
(G) MeshGraph – the MeshGraph object that the DFS will be used on
(S) StartFace – the starting face for the algorithm. (if no start face is
present the first node in the graph will be used.
Outputs:
(G) MeshGraph – the tree MeshGraph

MST Kruskal (mstK) Minimum Spanning Tree making tool based on the
disjoint set algorithm or Kruskal’s algorithm. This tool is part of a class
of algorithms that are able to parse a graph and create a minimum
spanning tree without a specified starting node or root. The process
starts by atomizing the graph into individual nodes. After that, at each
subsequent step, individual nodes or clusters of nodes are connected,
always using the edge with the lowest weight available. This, at every
intermediate step produces a set of subgraphs that keep getting linked
up into the final tree. By specifying a weight interval in the (W) input
weights outside the interval are avoided and thus, depending on the
weight landscape, a graph/mesh segmentation is achieved.
This is the fastest algorithm in Ivy and a good workhorse for any
number of segmentation tasks.
Inputs:
(G) MeshGraph – the MeshGraph object
(W) Weight Limit – the interval of weights to considered
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

MST Kruskal Concavity (mstCon) A variant of the standard Kruskal’s
algorithm with inbuilt concavity/convexity detection. The tool works in
a similar way with the standard variant but is able to detect edges that
would connect regions with different concavity/convexity or flatness
and increment their weight with 1 or 2. The increment is different
depending on whether the jump happens from flat to convex/concave
(+1) or from convex to concave (+2). This way convex, concave or flat

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 7

features can be singled out and separated from other parts of the
graph. The separation is controlled via the (I) input. Here an interval
below 1 or 2 can be specified leaving the edges that span
convex/concave/flat features outside the pick, and thus the parts
hopefully disconnected.
Inputs:
(G) MeshGraph – the MeshGraph object
(I) Interval – the interval of weights to be considered
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

MST Kruskal Valence (mstKv) Another variant of the standard Kruskal’s
algorithm with the added possibility of specifying the preferred
maximum valence for every node in the final tree graph. By specifying
and integer for the (V) input the algorithm is forced to avoid adding
new connections to any node if the current number of edges for the
node is equal or larger than the input value. This is not an absolute
rule. If the remaining nodes or clusters cannot be connected in any
other way other than with a larger valence node, they will be
connected. Here valence takes precedence over weight.
This is helpful in creating longer lean trees with fewer branching nodes.
(For V=2) This kind of trees produce better unroll candidates.
Inputs:
(G) MeshGraph – the MeshGraph object
(W) Weight Limit – the interval of weights to be considered
(V) Valence – the maximum valence for the nodes (default = 2)
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

Multi Root MST Edge (mrMSTedge) This tool is an evolution of the
weighted BFS algorithms like Prim’s. In this case on the same graph a
list of trees is grown at the same time. The rules are the same like in
the simple single root algorithm with the addition of the fact that the
individual trees cannot overlap each other. This algorithm also offers
the possibility of limiting the weight that is accessible to the tree. This
way the growth can be kept outside certain areas of the base
MeshGraph creating a segmentation. Another segmentation is
achieved through the simultaneous development of multiple tree
graphs on the same MeshGraph base. In this version of the algorithm
the edge weight is considered.
Inputs:
(G) MeshGraph – the MeshGraph object
(R) RootFaces – list of start nodes for the trees
(I) Interval – the interval of weights to be considered
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 8

Multi Root MST Node (mrMSTnode) A similar tool with the previous one
with the difference of using node weight instead of edge weight.
Inputs:
(G) MeshGraph – the MeshGraph object
(R) RootFaces – list of start nodes for the trees
(I) Interval – the interval of weights to be considered
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

Multi Root MST Concavity (mrMSTconc) Another version of the Multi
Root MST Edge tool that considers concavity and convexity of the next
parsed edge. Edges crossing from flat to either concave or convex
regions will have the weight incremented with +1. Edges crossing from
concave to convex or the other way around will have their weight
incremented with +2. This way the growth can avoid those features of
the MeshGraph or alternatively the edges can be left out in order to
trigger a MeshGraph segmentation.
Inputs:
(G) MeshGraph – the MeshGraph object
(R) RootFaces – list of start nodes for the trees
(I) Interval – the interval of weights to be considered
Outputs:
(G) MeshGraph – the tree MeshGraph or list of tree parts as
MeshGraphs.

Agents Control Random (AgentsCR) An evolution of the multi root
minimum spanning trees tool, where each of the individual trees
growing on the base MeshGraph has an individual behavior and its own
limits. An individual growing tree (agent) can switch between explore
and consume behaviors. The consume behavior equals a weighted BFS
much like Prim’s algorithm. Each of the fringe nodes looks for the
lightest edge to add another node to the tree. The explore behavior is
different in the sense that the same fringe nodes expand but only with
one unit each and each expansion is made avoiding to touch (come
into vicinity of) any other visited node. This way exploring sends out
tendrils that curl or extend based on the weight landscape, while
consume blankets the existing space with the visited nodes. Both
behaviors prioritize small weight edges.
Each agent also possesses its own limits (the interval for edge weights
that can be used) for both behaviors. This flavor of the tool switches
between behaviors randomly based on a coefficient set by the user.
Based on that coefficient, each agent has a different chance to choose
a certain behavior at any step.
Each behavior, for each agent, has a different weight interval.
This tool can potentially be used to create interlocking star-like
segmentations where the parts form a pattern on the mesh.
Inputs:
(G) MeshGraph – the MeshGraph object
(R) RootFaces – list of start nodes for the trees
(cI) ConsumeInterval – the interval of weights to be considered for the
consume behavior

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 9

(eI) ExploreInterval – the interval of weights to be considered for the
explore behavior
(b) Behavior – a value between 0 and 1 determining the chance of
picking consume or explore as a behavior for an agent at every step it
takes. Values < 0.5 mean more explore and larger more consume.
(I) Iteration – the iteration to display in the viewport. The growth of
every agent is cached and the user can select a certain step to see how
the agents evolve. Just plug a slider and pick a number to see that
intermediate state. The total number of iterations is displayed under
the component.
Outputs:
(G) MeshGraph – a list of MeshGraphs the result produced by every
agent.

Agents Programmed Behavior (AgentsPB) A tool very similar with the
previous one but with a difference. The behavior selection is not
random anymore but is selected according to a pattern of true/false
values fed by the user in the (b) input. If the pattern list is shorter than
the number of iterations, then the list is repeated. If the number of
values exceeds the number of iterations, then the extra values are
ignored.
Given a good understanding of the weight landscape this tool can be
programmed to create patterns on the mesh that are both easily
unfoldable and also facilitate a rapid fabrication process.
Inputs:
(G) MeshGraph – the MeshGraph object
(R) RootFaces – list of start nodes for the trees
(cI) ConsumeInterval – the interval of weights to be considered for the
consume behavior
(eI) ExploreInterval – the interval of weights to be considered for the
explore behavior
(b) Behavior – a list of Boolean values determining the behavior
selected for an agent at a certain step. False = explore, True = consume
(I) Iteration – the iteration to display in the viewport. The growth of
every agent is cached and the user can select a certain step to see how
the agents evolve. Just plug a slider and pick a number to see that
intermediate state. The total number of iterations is displayed under
the component.
Outputs:
(G) MeshGraph – a list of MeshGraphs the result produced by every
agent.

4. Secondary segmentation
The fourth section contains tools designed to further segment MeshGraph Trees. The tools work on
the assumption that a tree graph is entirely composed of simply connected nodes and by removing a
single edge, a graph segmentation is achieved. In order to use the tools in this section it is
recommended that the user first transforms the dual MeshGraph of a mesh into a tree.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 10

Weight Split Graph (WSplit) Splits a tree MeshGraph into subgraphs by
deleting edges. The edges with weight inside a supplied interval are
deleted. A special safeguard feature can keep graph chunks over a
minimum number of nodes in order to prevent over-atomization.
Inputs:
(G) MeshGraph – the MeshGraph object. Must be a tree.
(I) Interval – the interval of weights to be considered
(M) MinFaces – the minimum number of nodes/mesh faces a piece
needs to have in order for the split to be validated.
Outputs:
(G) SubGraphs – the list of MeshGraph pieces.

Weight Deviation Split Graph (DevSplit) Splits a tree MeshGraph into
subgraphs by deleting edges. The tree MeshGraph is parsed and the
edges with a weight larger or smaller than the previous edge by more
than a set amount are deleted. A special safeguard feature can keep
graph chunks over a minimum number of nodes in order to prevent
over-atomization.
This type of segmentation does a better job at splitting graphs at key
feature points.
Inputs:
(G) MeshGraph – the MeshGraph object. Must be a tree.
(D) Deviation – the amount the edge weight needs to deviate from the
previous one in order to be deleted
(M) MinFaces – the minimum number of nodes/mesh faces a piece
needs to have in order for the split to be validated.
Outputs:
(G) SubGraphs – the list of MeshGraph pieces.

5. Iterative segmentation
This section is home to special tools that iterate over a MeshGraph and recreate segmentations
based on an evolving set of variables that are read from the segmented pieces themselves. Here the
result is achieved by reaching a convergence value. For now, just one tool is part of this section but
more will be developed in due time.

K-Means Clustering (kMeans) Splits a MeshGraph into subgraphs using
the K-Means algorithm. The split is achieved iteratively by creating
clusters and determining if their geometrical center converges towards
a stable position. The clustering can start in two ways. The first way is
the somewhat standard K-Means approach of providing the algorithm
with the K number of desired clusters (input (P)) and allowing it to find
start positions for them. The second approach lets the user specify
exactly the start position (S) for the clusters centers thus shortening
the compute time. In order to produce the iteration a timer needs to
be connected to the component.

Inputs:
(R) Reset – reset switch that brings the clustering to its initial state.

https://en.wikipedia.org/wiki/K-means_clustering

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 11

(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
(P) Pieces – the number of pieces the algorithm should try to split the
graph into. This should be used alternatively with the next input. One
or the other.
(S) Seeds – manual input of the starting faces/graph nodes for the
clusters. This is the alternative for specifying the number of pieces
using the previous input.
Outputs:
(S) SubGraphs – the list of MeshGraph pieces.
(cS) CenterSeeds – the centers of the clusters as calculated by the
algorithm.

6. Special segmentation
This section contains tools that segment the MeshGraph in order to achieve a clear end-result. In
this case the segmentation can be considered a byproduct of the final tool output.

MeshGraph Unroll (mgUnroll) This tool unrolls the base mesh of a tree
MeshGraph. The segmentation is the byproduct of the requirement of
overlap avoidance in the unfolded state of the base mesh. The tool
unrolls the tree MeshGraph and outputs a list of MeshGraphs with flat
base meshes (Sf) and a list of the same segmentation but with the
original mesh geometry as a base (Sm). Those two outputs are the
prerequisites for the fabrication tools in the next category. The flat
pieces are piled one on top of each other at the plane location
provided by the (P) input. The tool also outputs the index of the edges
that have to be removed in order to avoid overlaps in the flat version
of the mesh.
Inputs:
(R) Reset – reset switch that brings the clustering to its initial state.
(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
(P) Pieces – the number of pieces the algorithm should try to split the
graph into. This should be used alternatively with the next input. One
or the other.
Outputs:
(M) Mesh – the unrolled mesh
(Sm) SplitMeshGraphs – the list of MeshGraph pieces on the original
geometry.
(Sf) SplitFlatGraphs – the list of split flap MeshGraphs without any
overlaps.
(Es) UnrollEdgeSplits – list of indexes for split edges during unroll

Shortest Paths in a Weighted MeshGRaph (sPath) An alternative use for
Dijkstra’s algorithm for computing the shortest (lightest) path in a
weight landscape. The algorithm computes a Dijkstra tree starting from
the start node until it reaches the end node. The connection between
the two, inside the tree graph, is the lightest path based on the weight

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 12

landscape. Multiple end point can be computed at the same time
because they are part of the same minimum spanning tree.
Inputs:
(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
(S) StartFace – the start face (node) for the minimal path calculation.
(E) EndFace – the end face (node) for the minimal path calculation
Outputs:
(Sp) ShortestPath – a linear MeshGraph containing the path between
the two nodes.

7. Fabrication
This section contains the tools that deal with the flat MeshGraphs after the unroll process. This is
why the section was placed after the special segmentation section and the unroll component. The
tools grouped in this section take care of the necessities for fabricating the unrolled graphs from thin
flat sheets. For this scope, besides the fabrication engine the section also contains two flap making
components. Those cater to both a speedy standard set-up and also an elaborate custom fabrication
scenario.

Flat Fabrication (FlatFab) The most important tool in the fabrication
section works in tandem with the MeshGraph Unroll tool. The data
outputted form the Unroll component is decomposed into meaningful
fabrication data like curves, tag locations and tag data. The 2d
fabrication data is divided into several outputs for an easy
management of the cut. The component outputs separate trees of
curves organized in: cuts, mountain folds, valley folds, no fold (flat)
lines. Also there are separate outputs for tag text and tag locations.
In order to create a useful fabrication this FlatFab component allows
for the user to specify the type of flap available for each connection
either between the pieces or inside every piece. The tool accepts as
input the custom Flap data type that encodes all the pertinent
information about the flap joinery. The next two component
descriptions will detail how the flap data is encoded and how the user
is able to construct and deploy flaps as part of a flat fabrication.
Inputs:
(Sm) SplitMeshGraphs – the list of MeshGraph pieces on the original
geometry. This connects directly from the Unroll MeshGraph
(Sf) SplitFlatGraphs – the list of split flap MeshGraphs without any
overlaps This connects directly from the Unroll MeshGraph
(F) Flaps – a list of flap data objects. The component will select from
this list the appropriate flap geometry using the topological edge mesh
id. This is encoded in the flap object. If a flap object with an
appropriate mesh id is not present in the list, the edge will not get a
flap.
(L) Location – input a standard plane here to specify the location of the
processed fabrication geometry. The geometry is still piled up. This
input is used just for moving the output of the component as one
piece.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 13

(O) TextOffset – a 0...1 value specifying the placement of the cut/flap
edge text tags. The values determine the placement of the start point
for the text along a line spanning from the face center to the edge
midpoint.
Outputs:
(C) Cut Lines – a GH tree with the lines that will need to be cut in the
flat fabrication. There will be a branch for each MeshGraph piece with
a sub-branch for each face. On each sub-branch a list with all the cut
lines for that mesh face will be grouped.
(Fi) FoldIn Lines – another GH tree with the lines that will be folded in
to construct the original geometry. The branch set-up is similar with
the Cut output.
(Fo) FoldOut Lines – a similar GH tree but this time for the lines that
will have to be folded out. Similar branch set-up
(Fl) Flat Line – GH tree with the same organization but containing the
lines that will not need to be folded or cut. These lines are usually
between the coplanar adjacent faces. The contents of this output is
usually not needed for fabrication.
(T) Text – the text content for each of the tags that will accompany the
flat fab lines.
(P) Place Holders – the location data needed for the text tags.
(Nc) Node Curves – the geometry added to the node in order to be
unrolled with the MeshGraph.

Simple Flap (sFlp) This tool creates a simple beveled flap for standard
glue connections in paper models. The tool encodes a flap data type
that will be used by the FlatFab component. Each simple flap needs to
know the topological edge it will be applied to. In order to produce
flaps for the whole model the tool needs a list with all the edges from
MeshGraph that will be cut. Ivy has a tool that does just that it is called
EdgeTypes. Alternatively, a list with indexes for all the edges in a mesh
can be fed in the (mE) input. Even if more flaps objects will be created
the FlatFab component will only use the ones that are required. This
kind of approach was chosen because it allows to combine flaps with
different settings for the same MeshGraph.
Inputs:
(G) MeshGraph – the MeshGraph object. The original MeshGraph
before any segmentation.
(W) Width – the width of the glue flap.
(B) Bevel – the bevel of the flap. This is distance based. A bevel
distance equal to the width will produce ca 45-degree bevel.
(D) Double – this boolean input specifies if the flap is double. A double
flap will produce a 2d cut flap on both cut edges resulted from a split
topological edge or MeshGraph edge. This is useful for creating flaps
that remain perpendicular to the geometry after gluing.
(mE) Mesh Edge Index – the mesh topological index that will be bound
to the flap.
Outputs:
(F) Flaps – a list of flap data objects for the FlatFab.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 14

Custom Flap (cFlp) This tool is a generalization of the previous one and
creates flaps giving the user complete control over the geometry and
use of the flap. The tool is able to create custom geometry different for
each side of a double flap and reads flaps constructed on the original
non-flat geometry. In this way the user is able to create a visualization
of the flaps on the original geometry and thus gauge the effect that
fabrication will have on the final product. The same general
construction lines are followed just like in the case of the simple
standard flap. In order to be properly identified by the FlatFab
component the flap object needs to encode the edge index it belongs
to. Also the original MeshGraph is needed in order to properly calibrate
the geometry in its flat state. The custom flaps can be constructed at
any angle on the original geometry in order to closely simulate the
fabricated product. The custom flap component needs to read those
custom directions for each flap in order to facilitate a proper transfer
of the geometry towards the flat state.
In order to facilitate complex planar geometries for each side of the
flap the geometry inputs for the two sides are lists. This ensures that
flaps constructed from multiple curves are properly translated to the
flat state and matched to their respective mesh ids. This approach
requires a careful data set-up for the component inputs. Basically it is
recommended (in the case of multiple flaps) to graft all inputs with 1
element per branch except the geometry inputs (FgA, FgB). The
geometry inputs will have one or more elements per list. This is the
most effective way of matching one mesh Id (mE), and custom
directions (Da, Db) with multiple curves (FgA, FgB) for a series of flaps.
Please consult the examples supplied with Ivy 0.8 for more
information.
Inputs:
(G) MeshGraph – the MeshGraph object. The original MeshGraph
before any segmentation.
(Da) Direction a – the custom direction set up on the original geometry
for the side A of the flap. This input is optional.
(Db) Direction b – the custom direction set up on the original geometry
for the side B of the flap. This input is optional.
(FgA) Flap Geometry A – this is a list input containing all the curve
entities needed to properly draw the flap’s side A. This allows for
designs with holes or cuts.
(FgB) Flap Geometry B – this is a list input containing all the curve
entities needed to properly draw the flap’s side B.
Outputs:
(F) Flaps – a list of flap data objects for the FlatFab.

8. Mesh Info
This section contains a set of tools that extract information from MeshGraphs. They are either tools
that are not ready available in Grasshopper, or special facilitators that inform important MeshGraph
tools and processes.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 15

Edge Angle (eAngle) This component extracts the dihedral angle for
each topological 2-manifold edge inside an MeshGraph. The angle is
calculated from the base mesh of the graph and is outputted in
radians. Because Rhino outputs only the smallest angle between the
faces the component also outputs the “bend” convex/concave for the
edge. This tool is designed to provide primary information for the
Custom Edge Weight tool for the scenarios where the angle number is
not used directly as raw data for the weight.
Inputs:
(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
Outputs:
(mId) Mesh Id – the mesh id that will accompany the angle value
(A) Angle – the angle value in radians.
(B) BendType – 1 = flat; 2 = concave; 3 = convex;

Edge Traversal (eTrav) A similar tool with the previous one designed to
work in a much the same scenario. This component calculates the
geodesic distance between the centers of two adjacent faces going
through the common edge’s midpoint.
Inputs:
(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
Outputs:
(mId) Mesh Id – the mesh id that will accompany the distance value
(A) Distance – the distance value.

Edge Types (eTypes) This component extracts the edges from a base
mesh by their MeshGraph statute. The edges can be either a graph
edge (one connecting nodes inside the graph) or a cut edge (one that
was deleted from the dual graph in the segmentation/tree making
process)
Inputs:
(G) MeshGraph – the MeshGraph object.
Outputs:
(gE) GraphEdges – mesh Ids for the graph edges
(cE) CutEdges – mesh Ids for the cut edges

Orange Peel Edges (OPE) The tool creates a pattern of nodes that
develop concentrically radiating from a set of mesh features. The
features are defined by a tree of mesh vertex ids provided by the user.
The vertex ids are grouped in branches each defining a feature that
ripples its own “waves”. The component outputs the edge ids for the
edges that span between the waves. This is useful in order to assign
weight to those edges and thus facilitate a segmentation in concentric
strips.
Inputs:
(G) MeshGraph – the MeshGraph object. For best results this should be
the initial dual MeshGraph so NOT a tree.
Outputs:
(gE) GraphEdges – mesh Ids for the graph edges

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 16

(S) StartVertices – the vertices defining the features of the mesh. The
centers of the ripples. In order to separate the features, the lists of
vertex ids need to be separated on different branches.

9. Other tools
This section contains miscellaneous tools that didn’t find a place in the other sections. They are not
used too often in the typical Ivy workflow, but might prove useful on occasion.

Graph Equality (GraphEqual) This component test two graphs for
equality. Equality for two graphs means the nodes and edges are equal
Inputs:
(A) MeshGraph A – the first MeshGraph object.
(B) MeshGraph B – the second MeshGraph object.
Outputs:
(E) Equality – a boolean value attesting the equality of the two graphs

Cull Graph Duplicates (CullGrph) A tool that uses the functionality of the
previous tool to get rid of the graph duplicates from a list.
Inputs:
(L) MeshGraph List – the list of graphs with duplicates
Outputs:
(L) MeshGraph List – the list of graphs without duplicates

Get Deepest Nodes (DeepestN) The tool computes the distance (in
graph steps) of each node in a tree MeshGraph to the nearest leaf (a
node with only one edge connection). It returns the index for the
node(s) with the largest number of steps to a leaf, those are the
deepest nodes in a tree.
Inputs:
(G) MeshGraph – the tree MeshGraph object.
Outputs:
(N) NodeList – the list of deepest nodes

Set Tree Root (TreeRoot) This tool sets the root of a MeshGraph to an
arbitrary node.
Inputs:
(G) MeshGraph – the MeshGraph object.
(R) RootIndex – the mesh Id for the node that will become the new
root.
Outputs:
(G) MeshGraph – the MeshGraph object with the new root.

Set Node Geometry This tool creates a node geometry object encoding
a number of flat curves that will be unrolled together with the
MeshGraph and the corresponding mesh.
Inputs:
(N) Node identifier – this is the node mesh id that will identify the node
in the MeshGraph.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 17

(C) Curves – the curve(s) that will inhabit the node. These need to be
nested in the corresponding mesh face and in the same plane.
Outputs:
(Ng) Node Geometry – a node data object shell with a node id and the
corresponding curve geometry.

Node Geo to Graph This tool inserts a node geometry object into a
MeshGraph.
Inputs:
(G) MeshGraph – the MeshGraph object.
(Ng) Node Geometry – a node data object shell with a node id and the
corresponding curve geometry.
Outputs:
(G) MeshGraph – the MeshGraph object with the added node
geometry.

Graph Structure (grphStruct) This tool makes use of the tree mesh
graph to create a structure that follows the geometry of the graph and
is offset-able with custom distances from root to leafs.
Inputs:
(G) MeshGraph – the tree MeshGraph object.
(e) EndHeight – the distance of the structure from the mesh at the leaf
level
(r) RootHeight – the distance of the structure from the mesh at the
root level
(c) Coefficient – a coefficient for the height for each step along the
graph. This will be multiplied with the distance from the base mesh at
each step thus decreasing or increasing the distance (if below 1.00 or
above 1.00)

Crease Mesh (creaseM) This tool makes use of the tree mesh graph to
create a new mesh with creases that follow the geometry of the graph.
The depth of the creases is user controllable and it follows the flow of
the graph like a hydrographic basin.
Inputs:
(G) MeshGraph – the tree MeshGraph object.
(e) EndHeight – the depth or height of the creases at the leaf level
(r) RootHeight – the depth or height of the creases at the root level
(c) Coefficient – a coefficient for the height for each step along the
graph. This will be multiplied with the distance from the base mesh at
each step thus decreasing or increasing the distance (if below 1.00 or
above 1.00)

Thin Mesh (thin) This tool makes use of the MeshGraph to create a
thinned version of the mesh and the associated MeshGraph. Each face
of the original mesh is scaled towards the face centroid according to a
scale coefficient. For each graph edge connecting to the respective
node a mesh bridge is created to the original mesh edge. The bridge is
created as a new mesh quad. The tool can work with multiple graph
inputs.
Inputs:

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 18

(G) MeshGraph – the MeshGraph object(s).
(c) Scale Coefficient – this controls the size of the mesh face. Can work
with values between 0 and 1
Outputs:
(OG) MeshGraph – the original MeshGraph object with internally
stored (non-visible thin mesh). Use this input for weave operation.
(Nm) The Mesh – the thinned mesh
(TG) Thinned Graph – the mesh graph based on the thinned mesh. This
is a fully rebuilt mesh graph and does not have any link with the
original graph. This is NOT usable for weaving operation.

Weave MGraphs (weave) A component (still under development) that
can weave pairs of tree graphs based on the same mesh. The
component also works with pairs of graph segments (like strips). It uses
the output from 2 thin mesh components. The tree graphs are weaved
piece by piece trying to alternate the “up” and “down” position for
each tree graph piece. For now, the weave algorithm is simplistic.
Inputs:
(G1) MeshGraph – The first set of tree segments. All segments must be
tree graphs and they must originate in the same original graph.
(G2) MeshGraph – The second set of tree segments. All segments must
be tree graphs and they must originate in the same original graph.
(o) Offset – The amount of distance the faces will be moved (in the
normal direction) in order to make the weave.
Outputs:
(G1) MeshGraph – The first set of weaved MeshGraph segments
(G2) MeshGraph – The second set of weaved MeshGraph segments
(M1) Mesh – The first set of weaved meshes.
(M2) Mesh – The second set of weaved meshes.

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 19

0. Index of Ivy commands.

1. MeshGraph creation. .. 1

Graph from mesh (GraphMsh).. 1

Graph to mesh (Graph2Msh) .. 2

MeshGraph (MGraph) ... 2

Graph Nodes (Nodes) .. 3

Graph Edges (Edges) ... 3

2. Adding weight. .. 3

Custom Edge Weight (cEdgeWeight) .. 4

Custom Node Weight (cNodeWeight ... 4

Color Edge Weight (Color Weight) .. 4

Face Midpoint Distance Edge Weight (MDistWeight) .. 4

Face Angle Edge Weight (FAWeight) .. 4

Face Size Node Weight (fsFaceWeight) .. 5

3.Primary segmentation ... 5

DFS Edge Weight (dfsEdge) ... 5

MST Prim (mstP) ... 5

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 20

MST Dijkstra (mstP) ... 6

MST Kruskal (mstK) ... 6

MST Kruskal Concavity (mstCon) .. 6

MST Kruskal Valence (mstKv) .. 7

Multi Root MST Edge (mrMSTedge) ... 7

Multi Root MST Node (mrMSTnode) .. 8

Multi Root MST Concavity (mrMSTconc) .. 8

Agents Control Random (AgentsCR) ... 8

Agents Programmed Behavior (AgentsPB) ... 9

4. Secondary segmentation .. 9

Weight Split Graph (WSplit) .. 10

Weight Deviation Split Graph (DevSplit) ... 10

5. Iterative segmentation .. 10

K-Means Clustering (kMeans) ... 10

6. Special segmentation .. 11

MeshGraph Unroll (mgUnroll) .. 11

Shortest Paths in a Weighted MeshGRaph (sPath) .. 11

7. Fabrication .. 12

Flat Fabrication (FlatFab) .. 12

Simple Flap (sFlp) .. 13

Custom Flap (cFlp)... 14

8. Mesh Info .. 14

Edge Angle (eAngle) .. 15

Edge Traversal (eTrav) .. 15

Edge Types (eTypes) .. 15

Orange Peel Edges (OPE) .. 15

9. Other tools .. 16

Graph Equality (GraphEqual) .. 16

Cull Graph Duplicates (CullGrph) .. 16

Get Deepest Nodes (DeepestN) .. 16

Set Tree Root (TreeRoot ... 16

Set Node Geometry .. 16

Node Geo to Graph ... 17

Graph Structure (grphStruct) .. 17

Crease Mesh (creaseM) .. 17

0. Index of Ivy commands. .. 19

Andrei Nejur Ivy for Grasshopper | User Manual | Version 1.0 | page 21

	1. MeshGraph creation.
	2. Adding weight.
	3.Primary segmentation
	4. Secondary segmentation
	5. Iterative segmentation
	6. Special segmentation
	7. Fabrication
	8. Mesh Info
	9. Other tools
	0. Index of Ivy commands.

